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Detection of discriminating patterns in gene expression data can be accomplished by using various methods of statistical learning.
It has been proposed that sample pooling in this context would have negative effects; however, pooling cannot always be avoided.
We propose a simulation framework to explicitly investigate the parameters of patterns, experimental design, noise, and choice
of method in order to find out which effects on classification performance are to be expected. We use a two-group classification
task and simulated gene expression data with independent differentially expressed genes as well as bivariate linear patterns and the
combination of both. Our results show a clear increase of prediction error with pool size. For pooled training sets powered partial
least squares discriminant analysis outperforms discriminance analysis, random forests, and support vector machines with linear
or radial kernel for two of three simulated scenarios. The proposed simulation approach can be implemented to systematically
investigate a number of additional scenarios of practical interest.

1. Introduction

Detection of discriminating patterns in gene expression data
can be accomplished by using various methods of statistical
learning. Such patterns are of interest as candidate biomark-
ers/biosignatures to classify samples, for example patients
eligible for treatment or not. The Biomarkers Definitions
Working Group defines a “biological marker” (biomarker)
as a characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic
processes, or pharmacological responses to a therapeutic
intervention [1]. For clinical management decisions as
in drug-development, risk assessment, diagnostic testing,
prognostic stratification, and treatment selection towards
individualised medicine, there is an urgent need for robust,
valid molecular biomarkers to replace invasive or expensive
gold standard methods [2]. In the case of so-called molecular
biomarkers, the measured features can be gene expression,
protein, hormone, or metabolite levels.

Ideally, biomarkers alone or in combination (as biosig-
natures) allow consistent classification of an individual

to a predefined group. Differential regulation of fea-
tures, however, does not generally qualify such features as
good biomarkers—often validation shows poor classification
results for features which were found to be significantly
differentially regulated (see, e.g., [3]). Given high individual
variances in feature levels (e.g., gene expression), combining
several single biomarkers to a so-called biomarker signature
(or biomarker panel) has been proposed to help [4]. First,
such a signature is more robust with respect to outlier
results as a single marker. Second, it enables capturing
multidimensional predictive patterns which are not manifest
on the univariate level. The latter makes biosignatures
appropriate for use in high dimensional data, as in the case
of molecular profiling or “OMICs” studies. Classification
tools have been developed for analysing multiple features
to reveal the optimal biosignature for discrimination, as
for example discriminance analysis, partial least squares
approaches, support vector machines, or random forests
[2, 4, 5]. Many of these methods can cope with both massive
collinearity of features as well as the “megavariate” nature of
these datasets, where the number of variables is mostly larger
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or much larger than the number of samples under study [6].
There exist numerous examples for using biosignatures from
OMICs data of several sorts for diagnostic or prognostic
purposes employing various kinds of statistical learning
approaches [7–10]. However, it remains a difficult task to
find a valid molecular biomarker which leads to a relevant
improvement to existing clinical laboratory values [11]. This
is especially true for experiments involving cohort studies
of healthy participants where the number of differentially
regulated features and patterns can be expected to be very
small.

In our study we address an additional problem: Often
small amounts of RNA per sample make sample pool-
ing necessary to enable microarray screening experiments.
However, sample pooling possibly compromises the analysis
results, especially regarding detection of biosignatures: An
Affymetrix technical note, for example, points out that once
RNA samples are mixed, it is impossible to identify outliers
or misclassified samples [12]. As a main observation, it
was shown that many transcripts identified as significantly
changed in individual samples were not identified in the
pooled samples. As a consequence it is recommended that
researchers use nonpooled (individual) samples in order to
identify statistically significant changes in gene expression.
Various and more quantitative investigations have shown
that sample pooling leads to biases for the estimates of
expression levels as well as it generates differences in lists
of detected differentially expressed genes [13, 14]. Shih et
al. [15] quantitatively investigated statistical implications of
sample pooling regarding imperfect averaging (pool bias)
and log transformation (log bias). Sadiq and Agranoff
[16] set out to experimentally investigate the consistency
of potential biomarker detection when individual case or
control serum samples are pooled. They foresee significant
limitations for the development of proteomic signature
patterns, if such studies would be based on pooled samples:
On the one hand their data suggest that low abundance
proteins, even when represented in a majority of individual
samples, may still be lost during pooling. Moreover sam-
ple pooling might result in significant limitations for the
development of multivariate signature patterns. Also others
propose limitations for the usage of pooling designs for
biosignature screening experiments: Kerr for example states
that pooling is “generally inappropriate” for classification
or clustering studies [17]. Allison and coauthors consider
pooling as interfering with the ability to accurately access
interindividual variation and co-variation [18]. However,
sample pooling is not always avoidable. This raises the
question of a good choice of method to detect biosignatures
in such cases.

In our study we ask for the actual influence of pooling
on the possibility to find multivariate discriminating patterns
for the classification task and the dependency on differential
expression, technical noise, and choice of method. As this
question has not been studied using concrete examples,
we set out to develop a simulation framework eligible
to consider the following questions: how are multivariate
patterns altered by pooling, and which methods are sensitive
to pooling designs, which are robust?

2. Model and Methods

2.1. Theoretical Background. We consider a gene expression
experiment and denote the expression of gene g in sample i
by Xg,i. We assume for each g ∈ {1, . . . ,G} that Xg,1, . . . ,Xg,n

are independent and identically distributed random variables
with mean μg and variance σ2.

Here n denotes the number of individuals and σ2

represents the biological variance between the subjects. We
get the following gene-wise model for the measured value of
the gene expression

Yg,i = Xg,i + εi, (1)

by accounting technical variation (measurements errors)
εi, εi ∼ N(0, σ2

ε ).
We only consider the case of an ideal pool where each

individual contributes equally to the pool; therefore, the
expression level of a pool is the average of the individuals
which form the pool (For details see subsection Pooling
design). If Xg,i is normally distributed and the pool size is
mp, 1 ≤ mp ≤ n, it follows that the gene expression of a pool
p (1 ≤ p ≤ n/mp) has the distribution X

p
g ∼ N(μg , σ2/mp).

As a measured value of a pool p we get

Y
p
g = X

p
g + εp. (2)

Here εp ∼ N(0, σ2
ε ), as in (1).

We compare two designs, a single sample design and a
pooling design. The variance of Yg = (1/n)

∑n
i=1 Yg,i in the

single sample design is equal to σ2
Yg,S

= (1/n)(σ2 + σ2
ε ) and

in the pooling design we have σ2
Yg,P

= (1/nP)(σ2/mp + σ2
ε ).

Here nP denotes the number of pools. The variance of Yg,S

depends on the variance components σ2
ε and σ2; the variance

of Yg,P depends also on the pool size (remember in our case
that all pools have the same size); see [13]. When we only
consider the biological variance, we get the total variance
σ2
Xg,S

= σ2/n for the single sample design and σ2
Xg,P

=
(1/nP)(σ2/mp) for the pooling design. We get the same total
variance in both designs by choosing n = mpnP .

To exemplify multivariate patterns we consider patterns
which were built out of two features for two classes, A and B.
A pattern, as we understand it, allows a partion of a feature
space into regions belonging to the classes of samples.

2.2. Simulating Gene Expression Data. Simulating two
designs, a design of a pooled study and a design of a
study with single samples, we consider the influence that
pooling has on a classification task. Data were generated
randomly for two classes A and B. Our data matrix has
60 rows (corresponding to the subjects) and 1000 columns
(corresponding to the features). The 60 rows are partitioned
in 30 rows per class. The matrix contains an informative
part and a large noninformative part with respect to the
classification. In the noninformative part the values are
normally distributed random variables with mean eight and
variance 0.22.

We investigate three scenarios for the informative data
part. In the first scenario we only simulate ten of 1000
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genes as independent differentially expressed between the
two classes A and B. For the second scenario we simulate
linear dependent genes (details below for the linear pattern).
For the third scenario we combine both independent differ-
entially expressed genes and linear patterns.

For the first scenario we simulate ten independent
differentially expressed features. This submatrix forms the
first ten columns of the simulated 60 samples× 1000 features
data matrix. For each of the ten genes we proceed in the
following way. The mean μA of class A is randomly chosen
(according to the uniform distribution) from the interval
[6, 10]. The 30 gene expression values which belong to
the subjects of class A are N(μA, 0.22)-distributed random
samples. The gene expression values of the class B individuals
are N(μA + Δ, 0.22)-distributed, where Δ is randomly chosen
according to the uniform distribution on the interval
[0.1, 0.5]. Technical noise is added with the two variance
levels 0.22 and 0.42.

For the second scenario we simulate a two-dimensional
pattern. The normally distributed XA

g1,i and XB
g1, j with i, j =

1, . . . , 30, both with variance σ2 = 0.22 and a mean randomly
chosen according to the uniform distribution on the interval
[6, 10] form the first component of the pattern, which is built
without loss of generality of the genes g1 and g2. We calculate
the values for XA

g2,i in the following way:

XA
g2,i = 2XA

g1,i, ∀i, (3)

and with the consideration of technical noise εi we get YA
g2,i =

2XA
g1,i + εi for all i. By analogy we calculate the values for class

B

XB
g2, j = 2XB

g1, j + δ ∀ j, (4)

and with the consideration of technical noise we get YB
g2, j =

2XB
g1, j +δ+ εj for all j. We use δ = 0.4. Again we evaluate two

noise levels with variances 0.22 and 0.42. Thus we simulate
pairwise linear dependent genes which are illustrated in
Figure 3. Separated by a straight line, this pattern has a
simple form. Simulating ten patterns, the simulated matrix
which is combined with the noninformative matrix consists
of 20 columns.

For the third scenario we implement these two scenarios
in combination, simulating again ten independent differen-
tially expressed features and ten linear patterns.

We simulated 500 training sets as described above. As test
sets, for each repetition, we simulated again a 60 × 1000 data
matrix with 30 rows per class under the same conditions.
Comparing a single sample design and a pooling design
for each scenario by accounting for the two noise levels,
we report the prediction errors of five statistical learning
methods. Here we understand as prediction error the relative
frequency of wrongly classified samples of the test set.

2.3. Pooling Design. Figure 1 shows our two simulated
designs for a classification task. The grey circles represent
the subjects of class A and the black circles the subjects of
class B (individuals or pools). In the left scheme a single
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Figure 1: Single sample design and pooling design for class
comparison. Design I (single samples) and design II (pooled
samples) for the comparison of class A and class B. In design I one
sample is analysed on a single array. In design II , at first, pools are
built with identical size. Afterwards each pool is hybridized on an
array.

sample is measured on an array. The right scheme shows
that pooling takes place before the samples are analysed.
Therefore we transform the simulated normally distributed
data by exponentiating the data with basis two and pool
this transformed data. After the pooling step we transform
the data back on the log scale again by taking base-two
logarithms of the values. We consider three different pool
sizes mp = 2, 3, 5. In each validation step the individuals of a
pool were randomly chosen without replacement. For choice
of sample size we account for n = mpnP . Every individual
sample only contributes to one pool and all original samples
were used for our classification task.

In the pooling design the methods are trained with the
pooled samples (training set) and tested with independent
new single samples (test set).

2.4. Methods for Classification. We use five different statistical
learning methods.

(1) Support vector machines with a linear kernel
(SVML). Support vector machine (SVM) classifica-
tion is based on large-margin separation and kernel
functions [19].

(2) Support vector machines with a radial basic kernel
(SVMR). The radial kernel is an example for a non-
linear classification approach. For both we use the R-
package e1071 [20] with a 10-fold cross validation on
the training data to assess the prediction error.

(3) Random forests: random forests (RF) is an ensemble
method which is based on decision trees and makes
a classification using majority votes over all trees
[21]. We choose the parameters 1000 as number of
trees to grow and 20 as number of randomly drawn
variables tested for splitting at each node. We use the
R-package randomForest.

(4) Powered partial least squares discriminant analysis:
powered partial least squares discriminant analysis
(PPLS-DA) is an advancement of powered partial
least squares (PPLS) for highly collinear predictors
with Fisher linear discriminant analysis (FLDA). The
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influence of not so important predictors can be
reduced in this approach by restricting the power
parameters like in the powered partial least squares
(PPLS) approach [22]. The linear combinations of
the columns of the predictor matrix that maximize
the covariance to the corresponding column of the
response matrix build the components (latent vari-
ables) which are used for the discriminant analysis.
We use the R-package cppls version 2.1–0 with
the power parameters (lower = 0, upper = 1);
therefore extracted components were only influenced
by few features. We also implemented an inner 10-
fold cross-validation to choose the number of PPLS
components.

(5) Linear discriminant analysis: As a univariate method
we use the t-test and after choosing the ten best
candidates with regard to the P-value we use these
t-test candidates for a linear discriminant analysis
(LDA).

For the methodological comparison we consider prediction
errors of these five methods in a pooled and a single
sample design. Confidence intervals are calculated taking a
Bootstrap approach [23] as implemented in the R-package
varbin.

Our codes are available on request.

3. Results

We compare three different scenarios. In the first scenario ten
independent genes are simulated with mean value differences
between the two classes, in the second scenario ten linear
dependent genes discriminating the groups are built, and in
the third scenario we combine both.

In the first scenario the difference between the mean
values of class A and B is randomly chosen according to
the uniform distribution on the interval [0.1, 0.5]. Figure 2
shows the prediction errors of the five methods in the
following order: SVML, SVMR, RF, PPLS-DA, and LDA
with the ten best t-test candidates, and for pools of size
mp = 1, 2, 3, 5 (mp = 1 corresponding to individual
samples, design I) by accounting for two noise levels. For
the right panel noise with a variance of 0, 42 (four times
biological variance) was added and for the left panel less
noise with a variance of 0.22 (same level as the biological
variance). The height of the bars represents the mean rate of
wrong predicted samples for 500 validation runs, in addition
the 95% bootstrap confidence intervals are given. With
increasing size of the pools the prediction error increases over
all methods. For the single samples (mp = 1), pools of size
two and three, LDA after t-test makes the lowest prediction
error with around 0.03, 0.09, and 0.19. But the prediction
error of LDA almost doubles for each step in size of the pools.
Considering PPLS-DA for all sizes of pools the prediction
error is under 0.25. The results of the two support vector
machine methods are similar with prediction errors between
0.23 and 0.38. For the higher noise level all methods except
SVMR show an increase of the prediction errors particularly
when comparing the single sample design with a design of

pools with size mp = 2. For both noise levels in the scenario
of independent differentially expressed genes LDA shows the
highest increase of the error rate while stepping up size of
pools. In the case of a pooling design with mp = 5 and for a
noise level of 0.22 the prediction error of LDA is more than
12 times higher as in the single sample design. For a technical
noise of 0.42 the LDA prediction error increases nearly by
four times between the single sample design and the pooling
design with mp = 5.

Figure 3 shows the bivariate linear pattern with the two
noise levels of variance 0.22 and 0.42 for single samples and
pools with the different sizes. The construction of the linear
pattern causes also a mean value difference between the
two classes of 0.4 for the second gene. The linear pattern is
persistent to pooling.

In Figure 4 the prediction errors for our second scenario
are shown. Again for the right-hand side of this figure a
higher noise level was added. Here the prediction error
is higher for all methods and pool sizes compared to
the first scenario. What is noticeable here is that the two
support vector machine methods have a very low increase of
prediction error comparing the single sample design with the
design of size of pool mp = 5. Especially SVMR in the higher
variance cases has only up to three more misclassifications.
Regarding only the right plot of Figure 4, RF shows the
highest prediction error for the single samples and all sizes
of pools except size mp = 5. Again LDA reacts with the
strongest increase viewed over all pool sizes for both noise
levels. PPLS-DA performs in average superior to the other
methods for this scenario with prediction errors lower than
0.22 and less than 0.34 for the variance levels similar to the
biological variance and four times higher as the biological
variance.

The result of the third scenario, the combination of
independent differentially expressed genes and the linear
pattern, is shown in Figure 5. For the different methods
the number of wrongly predicted samples is decreasing in
comparison to the first and the second scenarios. While
increasing the size of the pools PPLS-DA shows a prediction
error under 10% for a noise variance of 0.22. Viewed over
all settings for this scenario PPLS-DA shows the lowest
prediction error. For the different noise levels the prediction
error we found behaves very similarly for SVML, SVMR, and
RF.

4. Discussion

4.1. Summary of Main Results. We propose a simulation
framework to explicitly investigate parameters of pattern,
pool size, noise, and choice of method and their influence
on classification performance. We exemplify our simulation
approach by using a two-group classification task and
simulated gene expression data with independent genes and
linear dependent genes. Our results show a clear increase
of prediction error with size of pool when keeping the
total number of samples constant, for all five methods
investigated. PPLS-DA outperforms the other methods for
the linear pattern and the combination of independent
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Figure 2: Prediction errors for the first scenario: Ten differentially expressed genes with noise levels of variance 0.22 (a) and 0.42 (b). On the
x-axis the five statistical methods SVML, SVMR, RF, PPLS-DA and LDA after t-test are shown and on the y-axis the prediction error is given.
The height of a bar specifies the average prediction error of 500 runs for a specific pool size and the 95% bootstrap confidence intervals are
shown. The four bars for a method represent the different sizes of pools 1 (single samples), 2, 3 and 5 which are indicated by the numbers
below the bars.
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Figure 3: Linear patterns before and after pooling with two noise levels of variance 0.22 (a) and variance 0.42 (b). The grey circles represent
the subjects of class A and the black circles the subjects of class B (30 subjects per class). Pooling effects for the two cases of the linear pattern
are shown after pooling randomly two, three and five subjects.

differentially expressed genes and the linear pattern for all
pooled sample designs (see Figures 4 and 5). We conclude
that the proposed simulation approach should be imple-
mented to systematically investigate a number of additional
scenarios, patterns and methods of practical interest.

4.2. Significance of Results. As often recommended in the
context of experimental design eligible for classification
studies and, hence, detection of candidate biosignatures,
sample pooling should be avoided if possible [12, 17,
18]. For the first time our simulation study illustrates the
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Figure 4: Prediction errors for the second scenario: Ten linear patterns with noise levels of variance 0.22 (a) and 0.42 (b). On the x-axis
the five statistical methods SVML, SVMR, RF, PPLS-DA and LDA after t-test are shown and on the y-axis the prediction error is given. The
height of a bar specifies the average prediction error of 500 runs for a specific pool size and the 95% bootstrap confidence intervals are
shown. The four bars for a method represent the different sizes of pools 1 (single samples), 2, 3 and 5 which are indicated by the numbers
below the bars.

basis for this recommendation simulating actual illustrative
examples. For all methods under comparison a single
sample design is clearly preferred in our study—independent
from noise levels and pattern scenarios (with independent
differentially expressed genes or/and with pairwise linear
dependent genes). If pooling is inevitable, only PPLS-DA—
for two scenarios of our simulation study (see Figures 4
and 5)—even for the pooling designs provides not very
high prediction errors. The support vector machines are
most robust against pooling effects in the linear pattern
scenario (see Figure 4). Sample pooling is sometimes nec-
essary, as amounts of RNA isolated from single samples
may be much less than the required minimum for a
microarray gene expression experiment. Also, each tissue
isolate can in principle be seen as a pooled sample as
the single cells constituting the tissue are most probably
not synchronized regarding their regulatory circuit periods.
In these cases our results suggest that there are differ-
ences between methods of statistical learning regarding this
objective. For our examples we chose a bivariate linear
pattern as a very simple multivariate pattern. We cannot
generalise to all possible patterns and methods. More
complex patterns could change the performance of the
methods under comparison. In our study we only investigate
an example as illustration of our proposed simulation
framework.

4.3. Constraints and Benefits of Methods. As in our study we
wanted to examine pooling effects on a specific pattern, we
were not investigating experimental datasets as for example
in [24]. Taking a simulation approach we wanted to be able
to differentiate if our data showed independent differential

gene expression (of single features) or not in order to
control if the three described scenarios would have an effect
on predictive performance. In addition during simulation
we could control the noise level as well as exact type of
discriminating pattern present in the data.

When basing biomarker detection on pooled samples,
nevertheless the application area of such biomarkers would
be the single new sample to be classified, not a pool. In
our simulation we take care of this realistic constraint:
All test sets consist of single samples while pooling only
affects the training sets. Our modelling approach is based
on the assumption that after appropriate pretreatment gene
expression data (mostly their logs) will be approximately
normally distributed [25]. As Zhang et al. [26] point out,
other than approached by Shih et al. [15] and Kendziorski
et al. [13], pooling occurs on the level of RNA extracts,
that is, on the original scale, prior to transformations.
Therefore in our simulation approach to pooling, we back-
transform the normally distributed single sample data, pool
and then log transform again. Moreover in the current
implementation of the pooling model there is no equivalent
of what Kendziorski et al. [13] call the pooling error, but
pools are simulated as mean values of their constituting
single samples. Possible influences of realistic pooling errors
remain to be investigated.

Independent differentially expressed features were sim-
ulated using Δ between 0.1 and 0.5 on the log-scale—
which is equivalent to between 1.07- and 1.4-fold changes
in gene expression. These values for differential gene expres-
sion are comparatively small (compare to example [27]).
Our choice was motivated by the typical case for which
biomarker detection is not straight forward: no features
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Figure 5: Prediction errors for the third scenario: Ten differentially expressed genes and ten linear patterns with noise levels of variance 0.22

(a) and 0.42 (b). On the x-axis the five statistical methods SVML, SVMR, RF, PPLS-DA and LDA after t-test are shown and on the y-axis the
prediction error is given. The height of a bar specifies the average prediction error of 500 runs for a specific pool size and the 95% bootstrap
confidence intervals are shown. The four bars for a method represent the different sizes of pools 1 (single samples), 2, 3 and 5 which are
indicated by the numbers below the bars.

exist which could be used for discrimination by a simple
cutoff-criterion. Instead, information of such candidates has
to be combined (using methods of statistical learning) to
deliver a good biomarker signature. From our results it is,
however, clear that for our choice of independent differential
expression and pairwise linear dependent genes all meth-
ods under comparison could better use the combination
of both which is shown by lower prediction error rates
(see Figure 5).

We want to point out that for investigation of pooling
effects on classification abilities of different methods, noise
regimes and data with independent features with distinction
of mean values or with pairwise linear dependent features,
it is important to choose a model simple enough to allow
investigating the impact of the single effects. It remains an
open task to approach possibilities to analyse experimental
data in a similar way.

Internal cross-validation loops for the training step were
necessary where the methods had additional parameters to
optimise [2]. For PPLS, we had to optimize the number
of latent variables to be used for the regression. For the
support vector machines with the radial kernel we made
use of the implemented internal cross-validation to optimise
parameter γ.

4.4. Outlook. It is certainly a demanding future work to fit
further realistic simulation scenarios to experimental data
and draw conclusions for methodological recommendations
for data analysis. However, to date it is unclear how to
determine to which extent experimental data consist of

univariate differentially expressed genes, and how much is
the result of regulatory interactions, that is, multivariate
patterns. It would be conceivable to “substract” differentially
regulated genes from a dataset to result in a scenario with
only multivariate discriminating patterns remaining. Our
choice of pattern is largely arbitrary, many more alternative
possibilities exist, also truly multivariate patterns where
the number of interacting features exceeds two. Hence
the pattern dependency of pooling effects remains to be
investigated. Similarly our choice of methods is an arbitrary
subset from what is currently applied for classification
in OMICs datasets. Here we look forward to further
implementations of our simulation approach using further
methodological alternatives, possibly also for investigating
why some methods seem to be sensitive to sample pooling
while others are not. Feature selection performance would
be a further interesting characteristic—in addition to pure
predictive error—to compare different methods using our
proposed simulation framework: Does pooling alter the
possibility to find the correct, responsible discriminating
features?

Summarising we want to propose our approach to
investigate effects of sample pooling on classification per-
formances for different datasets (pooling design, patterns,
differentially expressed features) and classification methods.
As for many occasions pooling cannot be avoided, we look
forward to methodological recommendations to analyse
such designs with respect to detection of biosignatures for
prediction, based on systematic investigations using our
proposed framework.
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